Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
EMBO J ; 42(13): e112542, 2023 07 03.
Article in English | MEDLINE | ID: covidwho-2327293

ABSTRACT

Lipid droplets (LDs) form inter-organelle contacts with the endoplasmic reticulum (ER) that promote their biogenesis, while LD contacts with mitochondria enhance ß-oxidation of contained fatty acids. Viruses have been shown to take advantage of lipid droplets to promote viral production, but it remains unclear whether they also modulate the interactions between LDs and other organelles. Here, we showed that coronavirus ORF6 protein targets LDs and is localized to the mitochondria-LD and ER-LD contact sites, where it regulates LD biogenesis and lipolysis. At the molecular level, we find that ORF6 inserts into the LD lipid monolayer via its two amphipathic helices. ORF6 further interacts with ER membrane proteins BAP31 and USE1 to mediate ER-LDs contact formation. Additionally, ORF6 interacts with the SAM complex in the mitochondrial outer membrane to link mitochondria to LDs. In doing so, ORF6 promotes cellular lipolysis and LD biogenesis to reprogram host cell lipid flux and facilitate viral production.


Subject(s)
Coronavirus , Coronavirus/metabolism , Endoplasmic Reticulum/metabolism , Lipid Droplets/metabolism , Lipolysis , Fatty Acids/metabolism
2.
J Cell Biol ; 222(7)2023 07 03.
Article in English | MEDLINE | ID: covidwho-2305708

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the etiologic agent for the global COVID-19 pandemic, triggers the formation of endoplasmic reticulum (ER)-derived replication organelles, including double-membrane vesicles (DMVs), in the host cell to support viral replication. Here, we clarify how SARS-CoV-2 hijacks host factors to construct the DMVs. We show that the ER morphogenic proteins reticulon-3 (RTN3) and RTN4 help drive DMV formation, enabling viral replication, which leads to productive infection. Different SARS-CoV-2 variants, including the delta variant, use the RTN-dependent pathway to promote infection. Mechanistically, our results reveal that the membrane-embedded reticulon homology domain (RHD) of the RTNs is sufficient to functionally support viral replication and physically engage NSP3 and NSP4, two viral non-structural membrane proteins known to induce DMV formation. Our findings thus identify the ER morphogenic RTN3 and RTN4 membrane proteins as host factors that help promote the biogenesis of SARS-CoV-2-induced DMVs, which can act as viral replication platforms.


Subject(s)
Endoplasmic Reticulum , Membrane Proteins , Organelles , SARS-CoV-2 , Humans , COVID-19/virology , Endoplasmic Reticulum/virology , Membrane Proteins/metabolism , Pandemics , SARS-CoV-2/physiology , Virus Replication , Organelles/virology , Viral Nonstructural Proteins/metabolism
4.
J Leukoc Biol ; 113(1): 1-10, 2023 01 10.
Article in English | MEDLINE | ID: covidwho-2249632

ABSTRACT

Hyperinflammation present in individuals with severe COVID-19 has been associated with an exacerbated cytokine production and hyperactivated immune cells. Endoplasmic reticulum stress leading to the unfolded protein response has been recently reported as an active player in inducing inflammatory responses. Once unfolded protein response is activated, GRP78, an endoplasmic reticulum-resident chaperone, is translocated to the cell surface (sGRP78), where it is considered a cell stress marker; however, its presence has not been evaluated in immune cells during disease. Here we assessed the presence of sGRP78 on different cell subsets in blood samples from severe or convalescent COVID-19 patients. The frequency of CD45+sGRP78+ cells was higher in patients with the disease compared to convalescent patients. The latter showed similar frequencies to healthy controls. In patients with COVID-19, the lymphoid compartment showed the highest presence of sGRP78+ cells versus the myeloid compartment. CCL2, TNF-α, C-reactive protein, and international normalized ratio measurements showed a positive correlation with the frequency of CD45+sGRP78+ cells. Finally, gene expression microarray data showed that activated T and B cells increased the expression of GRP78, and peripheral blood mononuclear cells from healthy donors acquired sGRP78 upon activation with ionomycin and PMA. Thus, our data highlight the association of sGRP78 on immune cells in patients with severe COVID-19.


Subject(s)
COVID-19 , Endoplasmic Reticulum Chaperone BiP , Humans , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Leukocytes, Mononuclear/metabolism , COVID-19/metabolism , Molecular Chaperones/genetics , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress
5.
J Biol Chem ; 299(2): 102836, 2023 02.
Article in English | MEDLINE | ID: covidwho-2239311

ABSTRACT

Gap junctional intercellular communication (GJIC) involving astrocytes is important for proper CNS homeostasis. As determined in our previous studies, trafficking of the predominant astrocyte GJ protein, Connexin43 (Cx43), is disrupted in response to infection with a neurotropic murine ß-coronavirus (MHV-A59). However, how host factors are involved in Cx43 trafficking and the infection response is not clear. Here, we show that Cx43 retention due to MHV-A59 infection was associated with increased ER stress and reduced expression of chaperone protein ERp29. Treatment of MHV-A59-infected astrocytes with the chemical chaperone 4-sodium phenylbutyrate increased ERp29 expression, rescued Cx43 transport to the cell surface, increased GJIC, and reduced ER stress. We obtained similar results using an astrocytoma cell line (delayed brain tumor) upon MHV-A59 infection. Critically, delayed brain tumor cells transfected to express exogenous ERp29 were less susceptible to MHV-A59 infection and showed increased Cx43-mediated GJIC. Treatment with Cx43 mimetic peptides inhibited GJIC and increased viral susceptibility, demonstrating a role for intercellular communication in reducing MHV-A59 infectivity. Taken together, these results support a therapeutically targetable ERp29-dependent mechanism where ß-coronavirus infectivity is modulated by reducing ER stress and rescuing Cx43 trafficking and function.


Subject(s)
Disease Susceptibility , Endoplasmic Reticulum , Host Microbial Interactions , Molecular Chaperones , Murine hepatitis virus , Animals , Mice , Astrocytoma/pathology , Astrocytoma/virology , Brain Neoplasms/pathology , Brain Neoplasms/virology , Cell Communication , Cell Line, Tumor , Connexin 43/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Gap Junctions/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Murine hepatitis virus/metabolism , Protein Transport , Transfection
6.
J Med Chem ; 66(4): 2744-2760, 2023 02 23.
Article in English | MEDLINE | ID: covidwho-2242001

ABSTRACT

Enveloped viruses depend on the host endoplasmic reticulum (ER) quality control (QC) machinery for proper glycoprotein folding. The endoplasmic reticulum quality control (ERQC) enzyme α-glucosidase I (α-GluI) is an attractive target for developing broad-spectrum antivirals. We synthesized 28 inhibitors designed to interact with all four subsites of the α-GluI active site. These inhibitors are derivatives of the iminosugars 1-deoxynojirimycin (1-DNJ) and valiolamine. Crystal structures of ER α-GluI bound to 25 1-DNJ and three valiolamine derivatives revealed the basis for inhibitory potency. We established the structure-activity relationship (SAR) and used the Site Identification by Ligand Competitive Saturation (SILCS) method to develop a model for predicting α-GluI inhibition. We screened the compounds against SARS-CoV-2 in vitro to identify those with greater antiviral activity than the benchmark α-glucosidase inhibitor UV-4. These host-targeting compounds are candidates for investigation in animal models of SARS-CoV-2 and for testing against other viruses that rely on ERQC for correct glycoprotein folding.


Subject(s)
1-Deoxynojirimycin , Antiviral Agents , COVID-19 , Glycoside Hydrolase Inhibitors , alpha-Glucosidases , Animals , 1-Deoxynojirimycin/chemistry , 1-Deoxynojirimycin/pharmacology , alpha-Glucosidases/drug effects , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Endoplasmic Reticulum/enzymology , Glycoproteins , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , SARS-CoV-2/metabolism , Quantitative Structure-Activity Relationship
7.
Nature ; 609(7928): 815-821, 2022 09.
Article in English | MEDLINE | ID: covidwho-2050415

ABSTRACT

Lysosomal dysfunction has been increasingly linked to disease and normal ageing1,2. Lysosomal membrane permeabilization (LMP), a hallmark of lysosome-related diseases, can be triggered by diverse cellular stressors3. Given the damaging contents of lysosomes, LMP must be rapidly resolved, although the underlying mechanisms are poorly understood. Here, using an unbiased proteomic approach, we show that LMP stimulates a phosphoinositide-initiated membrane tethering and lipid transport (PITT) pathway for rapid lysosomal repair. Upon LMP, phosphatidylinositol-4 kinase type 2α (PI4K2A) accumulates rapidly on damaged lysosomes, generating high levels of the lipid messenger phosphatidylinositol-4-phosphate. Lysosomal phosphatidylinositol-4-phosphate in turn recruits multiple oxysterol-binding protein (OSBP)-related protein (ORP) family members, including ORP9, ORP10, ORP11 and OSBP, to orchestrate extensive new membrane contact sites between damaged lysosomes and the endoplasmic reticulum. The ORPs subsequently catalyse robust endoplasmic reticulum-to-lysosome transfer of phosphatidylserine and cholesterol to support rapid lysosomal repair. Finally, the lipid transfer protein ATG2 is also recruited to damaged lysosomes where its activity is potently stimulated by phosphatidylserine. Independent of macroautophagy, ATG2 mediates rapid membrane repair through direct lysosomal lipid transfer. Together, our findings identify that the PITT pathway maintains lysosomal membrane integrity, with important implications for numerous age-related diseases characterized by impaired lysosomal function.


Subject(s)
Lysosomes , Phosphatidylinositols , Signal Transduction , Autophagy-Related Proteins/metabolism , Biological Transport , Cholesterol/metabolism , Endoplasmic Reticulum/metabolism , Intracellular Space/metabolism , Lysosomes/metabolism , Lysosomes/pathology , Oxysterols/metabolism , Phosphatidylinositol Phosphates/metabolism , Phosphatidylinositols/metabolism , Phosphatidylserines/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Proteomics , Receptors, Steroid/metabolism
8.
Pharmacol Res ; 185: 106477, 2022 11.
Article in English | MEDLINE | ID: covidwho-2049743

ABSTRACT

Receptor expression-enhancing proteins (REEPs) are an evolutionarily conserved protein family that is pivotal to the structure and function of the endoplasmic reticulum (ER). The REEP family can be classified into two major subfamilies in higher species, the REEP1-4 and REEP5-6 subfamilies. Within the REEP1-4 subfamily, REEP1 and REEP2 are closely related, and REEP3 and REEP4 are similarly related. The REEP family is widely distributed in various tissues. Recent studies indicate that the REEP family is involved in many pathological and physiological processes, such as ER morphogenesis and remodeling, microtubule cytoskeleton regulation, and the trafficking and expression of G protein-coupled receptors (GPCRs). Moreover, the REEP family plays crucial roles in the occurrence and development of many diseases, including neurological diseases, diabetes, retinal diseases, cardiac diseases, infertility, obesity, oligoarticular juvenile idiopathic arthritis (OJIA), COVID-19, and cancer. In the present review, we describe the distribution and structure of the REEP family. Furthermore, we summarize the functions and the associated diseases of this family. Based on the pleiotropic actions of the REEP family, the study of its family members is crucial to understanding the relevant pathophysiological processes and developing strategies to modulate and control these related diseases.


Subject(s)
COVID-19 , Humans , Endoplasmic Reticulum/metabolism , Carrier Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Cytoskeleton/metabolism , Membrane Transport Proteins/metabolism
9.
Sci Rep ; 12(1): 14975, 2022 Sep 02.
Article in English | MEDLINE | ID: covidwho-2008330

ABSTRACT

Retro-2 directly interacts with an ER exit site protein, Sec16A, inhibiting ER exit of a Golgi tSNARE, Syntaxin5, which results in rapid re-distribution of Syntaxin5 to the ER. Recently, it was shown that SARS-CoV-2 infection disrupts the Golgi apparatus within 6-12 h, while its replication was effectively inhibited by Retro-2 in cultured human lung cells. Yet, exactly how Retro-2 may influence ultrastructure of the Golgi apparatus have not been thoroughly investigated. In this study, we characterized the effect of Retro-2 treatment on ultrastructure of the Golgi apparatus using electron microscopy and EM tomography. Our initial results on protein secretion showed that Retro-2 treatment does not significantly influence secretion of either small or large cargos. Ultra-structural study of the Golgi, however, revealed rapid accumulation of COPI-like vesicular profiles in the perinuclear area and a partial disassembly of the Golgi stack under electron microscope within 3-5 h, suggesting altered Golgi organization in these cells. Retro-2 treatment in cells depleted of GRASP65/55, the two well-known Golgi structural proteins, induced complete and rapid disassembly of the Golgi into individual cisterna. Taken together, these results suggest that Retro-2 profoundly alters Golgi structure to a much greater extent than previously anticipated.


Subject(s)
COVID-19 , Golgi Apparatus , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Humans , SARS-CoV-2 , Vesicular Transport Proteins/metabolism
10.
Virus Res ; 320: 198897, 2022 Oct 15.
Article in English | MEDLINE | ID: covidwho-1996618

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has recently emerged throughout the world, resulting in more than 400 million cases and over 6 million deaths worldwide as of January 2022. Coronaviruses subvert or use certain aspects of the unfolded protein response in the endoplasmic reticulum to overcome protein translation shutdown to benefit their replication. New virions use the ER-Golgi intermediate compartment to assemble and gain transportation to the cell membrane. Extensive remodeling of the ER has been demonstrated during SARS-CoV-2 infection. In this review article, we discuss the role of the endoplasmic reticulum secretory pathway in the replication cycle of SARS-CoV-2. Currently, there is a dearth of therapeutic options for intervening with SARS-CoV-2 infection. To accelerate drug development, efforts around the globe have been focusing on repurposing drugs that have already been approved for clinical use by regulatory agencies. Targeting the ERS pathway is reasonable, as prior work has shown that SARS-CoV-2 egress is dependent on this pathway. Here we discuss the feasibility of off-patent, FDA-approved, pharmacological inhibitors of the ERS pathway to suppress the SARS-CoV-2 replication cycle, a promising approach that warrants investigation.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Endoplasmic Reticulum , Humans , Secretory Pathway
12.
Cell Mol Life Sci ; 79(8): 425, 2022 Jul 16.
Article in English | MEDLINE | ID: covidwho-1935748

ABSTRACT

Positive single-strand RNA (+ RNA) viruses can remodel host cell membranes to induce a replication organelle (RO) isolating the replication of their genome from innate immunity mechanisms. Some of these viruses, including severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), induce double-membrane vesicles (DMVs) for this purpose. Viral non-structural proteins are essential for DMV biogenesis, but they cannot form without an original membrane from a host cell organelle and a significant supply of lipids. The endoplasmic reticulum (ER) and the initial mechanisms of autophagic processes have been shown to be essential for the biogenesis of SARS-CoV-2 DMVs. However, by analogy with other DMV-inducing viruses, it seems likely that the Golgi apparatus, mitochondria and lipid droplets are also involved. As for hepatitis C virus (HCV), pores crossing both membranes of SARS-CoV-2-induced DMVs have been identified. These pores presumably allow the supply of metabolites essential for viral replication within the DMV, together with the export of the newly synthesized viral RNA to form the genome of future virions. It remains unknown whether, as for HCV, DMVs with open pores can coexist with the fully sealed DMVs required for the storage of large amounts of viral RNA. Interestingly, recent studies have revealed many similarities in the mechanisms of DMV biogenesis and morphology between these two phylogenetically distant viruses. An understanding of the mechanisms of DMV formation and their role in the infectious cycle of SARS-CoV-2 may be essential for the development of new antiviral approaches against this pathogen or other coronaviruses that may emerge in the future.


Subject(s)
COVID-19 , Hepatitis C , Endoplasmic Reticulum/metabolism , Hepacivirus/genetics , Humans , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2 , Viral Nonstructural Proteins/genetics , Virus Replication
13.
Redox Biol ; 54: 102388, 2022 08.
Article in English | MEDLINE | ID: covidwho-1907715

ABSTRACT

The replication machinery of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is closely associated with the endoplasmic reticulum (ER) in host cells. Activation of the unfolded protein response (UPR) is a strategy hijacked by coronavirus to facilitate its replication and suppress host innate immunity. Here, we have found that SARS-CoV-2 ORF8 protein accumulates in the ER and escapes the degradation system by forming mixed disulfide complexes with ER oxidoreductases. ORF8 induces the activation of three UPR pathways through targeting key UPR components, remodels ER morphology and accelerates protein trafficking. Moreover, small molecule reducing agents release ORF8 from the mixed disulfide complexes and facilitate its degradation, therefore mitigate ER stress. Our study reveals a unique mechanism by which SARS-CoV-2 ORF8 escapes degradation by host cells and regulates ER reshaping. Targeting ORF8-involved mixed disulfide complexes could be a new strategy to alleviate SARS-CoV-2 induced ER stress and related diseases.


Subject(s)
Disulfides , Endoplasmic Reticulum , SARS-CoV-2 , Viral Proteins , COVID-19 , Disulfides/metabolism , Endoplasmic Reticulum/metabolism , Humans , Oxidoreductases/metabolism , Viral Proteins/metabolism
14.
Microbiol Mol Biol Rev ; 85(4): e0003521, 2021 12 15.
Article in English | MEDLINE | ID: covidwho-1854242

ABSTRACT

Viruses are intracellular parasites that subvert the functions of their host cells to accomplish their infection cycle. The endoplasmic reticulum (ER)-residing chaperone proteins are central for the achievement of different steps of the viral cycle, from entry and replication to assembly and exit. The most abundant ER chaperones are GRP78 (78-kDa glucose-regulated protein), GRP94 (94-kDa glucose-regulated protein), the carbohydrate or lectin-like chaperones calnexin (CNX) and calreticulin (CRT), the protein disulfide isomerases (PDIs), and the DNAJ chaperones. This review will focus on the pleiotropic roles of ER chaperones during viral infection. We will cover their essential role in the folding and quality control of viral proteins, notably viral glycoproteins which play a major role in host cell infection. We will also describe how viruses co-opt ER chaperones at various steps of their infectious cycle but also in order to evade immune responses and avoid apoptosis. Finally, we will discuss the different molecules targeting these chaperones and the perspectives in the development of broad-spectrum antiviral drugs.


Subject(s)
Endoplasmic Reticulum Chaperone BiP , Virus Diseases , Calnexin/metabolism , Endoplasmic Reticulum/metabolism , Humans , Molecular Chaperones/metabolism
15.
Virology ; 570: 1-8, 2022 05.
Article in English | MEDLINE | ID: covidwho-1839383

ABSTRACT

Enveloped viruses such as Coronaviridae (CoV) enter the host cell by fusing the viral envelope directly with the plasma membrane (PM) or with the membrane of the endosome. Replication of the CoV genome takes place in membrane compartments formed by rearrangement of the endoplasmic reticulum (ER) membrane network. Budding of these viruses occurs from the ER-Golgi intermediate compartment (ERGIC). The relationship between proteins and various membranes is crucial for the replication cycle of CoVs. The role of transmembrane domains (TMDs) and pre-transmembrane domains (pre-TMD) of viral proteins in this process is gaining more recognition. Here we present a thorough analysis of physico-chemical parameters, such as accessible surface area (ASA), average hydrophobicity (Hav), and contribution of specific amino acids in TMDs and pre-TMDs of single-span membrane proteins of human viruses. We focus on unique properties of these elements in CoV and postulate their role in adaptation to diverse host membranes and regulation of retention of membrane proteins during replication.


Subject(s)
Coronaviridae , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Protein Domains , Viral Proteins/metabolism
16.
J Virol ; 96(1): e0169521, 2022 01 12.
Article in English | MEDLINE | ID: covidwho-1816694

ABSTRACT

The replication of coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and the recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is closely associated with the endoplasmic reticulum (ER) of infected cells. The unfolded protein response (UPR), which is mediated by ER stress (ERS), is a typical outcome in coronavirus-infected cells and is closely associated with the characteristics of coronaviruses. However, the interaction between virus-induced ERS and coronavirus replication is poorly understood. Here, we demonstrate that infection with the betacoronavirus porcine hemagglutinating encephalomyelitis virus (PHEV) induced ERS and triggered all three branches of the UPR signaling pathway both in vitro and in vivo. In addition, ERS suppressed PHEV replication in mouse neuro-2a (N2a) cells primarily by activating the protein kinase R-like ER kinase (PERK)-eukaryotic initiation factor 2α (eIF2α) axis of the UPR. Moreover, another eIF2α phosphorylation kinase, interferon (IFN)-induced double-stranded RNA-dependent protein kinase (PKR), was also activated and acted cooperatively with PERK to decrease PHEV replication. Furthermore, we demonstrate that the PERK/PKR-eIF2α pathways negatively regulated PHEV replication by attenuating global protein translation. Phosphorylated eIF2α also promoted the formation of stress granules (SGs), which in turn repressed PHEV replication. In summary, our study presents a vital aspect of the host innate response to invading pathogens and reveals attractive host targets (e.g., PERK, PKR, and eIF2α) for antiviral drugs. IMPORTANCE Coronavirus diseases are caused by different coronaviruses of importance in humans and animals, and specific treatments are extremely limited. ERS, which can activate the UPR to modulate viral replication and the host innate response, is a frequent occurrence in coronavirus-infected cells. PHEV, a neurotropic betacoronavirus, causes nerve cell damage, which accounts for the high mortality rates in suckling piglets. However, it remains incompletely understood whether the highly developed ER in nerve cells plays an antiviral role in ERS and how ERS regulates viral proliferation. In this study, we found that PHEV infection induced ERS and activated the UPR both in vitro and in vivo and that the activated PERK/PKR-eIF2α axis inhibited PHEV replication through attenuating global protein translation and promoting SG formation. A better understanding of coronavirus-induced ERS and UPR activation may reveal the pathogenic mechanism of coronavirus and facilitate the development of new treatment strategies for these diseases.


Subject(s)
Betacoronavirus 1/physiology , Coronavirus Infections/metabolism , Eukaryotic Initiation Factor-2/metabolism , Stress Granules/metabolism , Virus Replication/physiology , eIF-2 Kinase/metabolism , Animals , Betacoronavirus 1/metabolism , Cell Line , Coronavirus Infections/virology , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Endoplasmic Reticulum Stress , Mice , Phosphorylation , Protein Biosynthesis , Signal Transduction , Unfolded Protein Response
17.
Nat Biotechnol ; 40(7): 1132-1142, 2022 07.
Article in English | MEDLINE | ID: covidwho-1805637

ABSTRACT

The low photostability of fluorescent proteins is a limiting factor in many applications of fluorescence microscopy. Here we present StayGold, a green fluorescent protein (GFP) derived from the jellyfish Cytaeis uchidae. StayGold is over one order of magnitude more photostable than any currently available fluorescent protein and has a cellular brightness similar to mNeonGreen. We used StayGold to image the dynamics of the endoplasmic reticulum (ER) with high spatiotemporal resolution over several minutes using structured illumination microscopy (SIM) and observed substantially less photobleaching than with a GFP variant optimized for stability in the ER. Using StayGold fusions and SIM, we also imaged the dynamics of mitochondrial fusion and fission and mapped the viral spike proteins in fixed cells infected with severe acute respiratory syndrome coronavirus 2. As StayGold is a dimer, we created a tandem dimer version that allowed us to observe the dynamics of microtubules and the excitatory post-synaptic density in neurons. StayGold will substantially reduce the limitations imposed by photobleaching, especially in live cell or volumetric imaging.


Subject(s)
COVID-19 , Endoplasmic Reticulum , Green Fluorescent Proteins/genetics , Humans , Microscopy, Fluorescence/methods
18.
Autophagy ; 18(11): 2576-2592, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1722064

ABSTRACT

SARS-CoV-2 infections have resulted in a very large number of severe cases of COVID-19 and deaths worldwide. However, knowledge of SARS-CoV-2 infection, pathogenesis and therapy remains limited, emphasizing the urgent need for fundamental studies and drug development. Studies have shown that induction of macroautophagy/autophagy and hijacking of the autophagic machinery are essential for the infection and replication of SARS-CoV-2; however, the mechanism of this manipulation and the function of autophagy during SARS-CoV-2 infection remain unclear. In the present study, we identified ORF3a as an inducer of autophagy (in particular reticulophagy) and revealed that ORF3a localizes to the ER and induces RETREG1/FAM134B-related reticulophagy through the HMGB1-BECN1 (beclin 1) pathway. As a consequence, ORF3a induces ER stress and inflammatory responses through reticulophagy and then sensitizes cells to the acquisition of an ER stress-related early apoptotic phenotype and facilitates SARS-CoV-2 infection, suggesting that SARS-CoV-2 ORF3a hijacks reticulophagy and then disrupts ER homeostasis to induce ER stress and inflammatory responses during SARS-CoV-2 infection. These findings reveal the sequential induction of reticulophagy, ER stress and acute inflammatory responses during SARS-CoV-2 infection and imply the therapeutic potential of reticulophagy and ER stress-related drugs for COVID-19.Abbreviations: CQ: chloroquine; DEGs: differentially expressed genes; ER: endoplasmic reticulum; GSEA: gene set enrichment analysis; HMGB1: high mobility group box 1; HMOX1: heme oxygenase 1; MERS-CoV: Middle East respiratory syndrome coronavirus; RETREG1/FAM134B: reticulophagy regulator 1; RTN4: reticulon 4; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; TN: tunicamycin.


Subject(s)
Autophagy , COVID-19 , Viroporin Proteins , Humans , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , HMGB1 Protein/metabolism , SARS-CoV-2 , Viroporin Proteins/metabolism
19.
Commun Biol ; 5(1): 115, 2022 02 08.
Article in English | MEDLINE | ID: covidwho-1684117

ABSTRACT

ß-Coronaviruses such as SARS-CoV-2 hijack coatomer protein-I (COPI) for spike protein retrograde trafficking to the progeny assembly site in endoplasmic reticulum-Golgi intermediate compartment (ERGIC). However, limited residue-level details are available into how the spike interacts with COPI. Here we identify an extended COPI binding motif in the spike that encompasses the canonical K-x-H dibasic sequence. This motif demonstrates selectivity for αCOPI subunit. Guided by an in silico analysis of dibasic motifs in the human proteome, we employ mutagenesis and binding assays to show that the spike motif terminal residues are critical modulators of complex dissociation, which is essential for spike release in ERGIC. αCOPI residues critical for spike motif binding are elucidated by mutagenesis and crystallography and found to be conserved in the zoonotic reservoirs, bats, pangolins, camels, and in humans. Collectively, our investigation on the spike motif identifies key COPI binding determinants with implications for retrograde trafficking.


Subject(s)
COVID-19/metabolism , Coat Protein Complex I/metabolism , Coatomer Protein/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Motifs/genetics , Amino Acid Sequence , Binding Sites/genetics , COVID-19/genetics , COVID-19/virology , Coat Protein Complex I/chemistry , Coat Protein Complex I/genetics , Coatomer Protein/chemistry , Coatomer Protein/genetics , Computer Simulation , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , HEK293 Cells , Humans , Models, Molecular , Mutation , Phylogeny , Protein Binding , Protein Domains , Protein Transport , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/classification , Spike Glycoprotein, Coronavirus/genetics , WD40 Repeats/genetics
20.
Autophagy ; 18(10): 2350-2367, 2022 10.
Article in English | MEDLINE | ID: covidwho-1671990

ABSTRACT

Zaire ebolavirus (EBOV) causes a severe hemorrhagic fever in humans and non-human primates with high morbidity and mortality. EBOV infection is dependent on its structural glycoprotein (GP), but high levels of GP expression also trigger cell rounding, detachment, and downregulation of many surface molecules that is thought to contribute to its high pathogenicity. Thus, EBOV has evolved an RNA editing mechanism to reduce its GP expression and increase its fitness. We now report that the GP expression is also suppressed at the protein level in cells by protein disulfide isomerases (PDIs). Although PDIs promote oxidative protein folding by catalyzing correct disulfide formation in the endoplasmic reticulum (ER), PDIA3/ERp57 adversely triggered the GP misfolding by targeting GP cysteine residues and activated the unfolded protein response (UPR). Abnormally folded GP was targeted by ER-associated protein degradation (ERAD) machinery and, unexpectedly, was degraded via the macroautophagy/autophagy-lysosomal pathway, but not the proteasomal pathway. PDIA3 also decreased the GP expression from other ebolavirus species but increased the GP expression from Marburg virus (MARV), which is consistent with the observation that MARV-GP does not cause cell rounding and detachment, and MARV does not regulate its GP expression via RNA editing during infection. Furthermore, five other PDIs also had a similar inhibitory activity to EBOV-GP. Thus, PDIs negatively regulate ebolavirus glycoprotein expression, which balances the viral life cycle by maximizing their infection but minimizing their cellular effect. We suggest that ebolaviruses hijack the host protein folding and ERAD machinery to increase their fitness via reticulophagy during infection.Abbreviations: 3-MA: 3-methyladenine; 4-PBA: 4-phenylbutyrate; ACTB: ß-actin; ATF: activating transcription factor; ATG: autophagy-related; BafA1: bafilomycin A1; BDBV: Bundibugyo ebolavirus; CALR: calreticulin; CANX: calnexin; CHX: cycloheximide; CMA: chaperone-mediated autophagy; ConA: concanamycin A; CRISPR: clusters of regularly interspaced short palindromic repeats; Cas9: CRISPR-associated protein 9; dsRNA: double-stranded RNA; EBOV: Zaire ebolavirus; EDEM: ER degradation enhancing alpha-mannosidase like protein; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; Env: envelope glycoprotein; ER: endoplasmic reticulum; ERAD: ER-associated protein degradation; ERN1/IRE1: endoplasmic reticulum to nucleus signaling 1; GP: glycoprotein; HA: hemagglutinin; HDAC6: histone deacetylase 6; HMM: high-molecular-mass; HIV-1: human immunodeficiency virus type 1; HSPA5/BiP: heat shock protein family A (Hsp70) member 5; IAV: influenza A virus; IP: immunoprecipitation; KIF: kifenesine; Lac: lactacystin; LAMP: lysosomal associated membrane protein; MAN1B1/ERManI: mannosidase alpha class 1B member 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MARV: Marburg virus; MLD: mucin-like domain; NHK/SERPINA1: alpha1-antitrypsin variant null (Hong Kong); NTZ: nitazoxanide; PDI: protein disulfide isomerase; RAVV: Ravn virus; RESTV: Reston ebolavirus; SARS-CoV: severe acute respiratory syndrome coronavirus; SBOV: Sudan ebolavirus; sGP: soluble GP; SQSTM1/p62: sequestosome 1; ssGP: small soluble GP; TAFV: Taï Forest ebolavirus; TIZ: tizoxanide; TGN: thapsigargin; TLD: TXN (thioredoxin)-like domain; Ub: ubiquitin; UPR: unfolded protein response; VLP: virus-like particle; VSV: vesicular stomatitis virus; WB: Western blotting; WT: wild-type; XBP1: X-box binding protein 1.


Subject(s)
Autophagy , Ebolavirus , Actins/metabolism , Animals , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/pharmacology , Calnexin/metabolism , Calreticulin/genetics , Calreticulin/metabolism , Calreticulin/pharmacology , Cycloheximide , Cysteine/metabolism , Disulfides , Endoplasmic Reticulum/metabolism , Glycoproteins/metabolism , Heat-Shock Proteins/metabolism , Hemagglutinins/metabolism , Hemagglutinins/pharmacology , Histone Deacetylase 6/genetics , Intercellular Signaling Peptides and Proteins , Lysosome-Associated Membrane Glycoproteins/metabolism , Lysosomes/metabolism , Microtubule-Associated Proteins/metabolism , Mucins/genetics , Mucins/metabolism , Mucins/pharmacology , Prokaryotic Initiation Factor-2/genetics , Prokaryotic Initiation Factor-2/metabolism , Prokaryotic Initiation Factor-2/pharmacology , Protein Disulfide-Isomerases/genetics , Protein Disulfide-Isomerases/metabolism , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/pharmacology , Sequestosome-1 Protein/metabolism , Thapsigargin/metabolism , Thapsigargin/pharmacology , Thioredoxins/genetics , Thioredoxins/metabolism , Thioredoxins/pharmacology , Ubiquitins/metabolism , X-Box Binding Protein 1/metabolism , alpha-Mannosidase/genetics , alpha-Mannosidase/metabolism , alpha-Mannosidase/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL